
  

  

Abstract — Signal sparsity is exploited in various signal 

processing approaches. The applicability ranges from 

compression, signal classification, coding, etc. Finding a 

suitable basis where the signal exhibits a compact (sparse) 

support is a challenging task and the result mainly depends 

on the signal nature. In this paper, we observed sinusoidally 

modulated signals appearing in wireless communications, 

namely the FHSS signals. As a sparsity domain, the Hermite 

transform domain is considered. The Hermite basis functions 

resemble the shapes of the FHSS signal components, and 

therefore these are considered as suitable for compact 

representation. In order to improve the sparsity of the 

observed signal components, we propose to employ a 

procedure for the Hermite transform optimization. As a 

result, the discrete Hermite functions better fit the signal 

components, producing just negligible errors between the 

original and optimized signal. The theory is verified by the 

experimental results. The procedure is tested on synthetic 

FHSS signal.  

Keywords — FHSS signals, signal sparsity, sparsification, 

Hermite transform domain. 

I. INTRODUCTION 

PARSE signal representation in certain domain is 

desirable property in signal processing and analysis 

[1]-[7]. Sparse signals are characterized by the condensed 

information of interest concentrated into a few signal 

coefficients [1],[6]. In other words, sparsity means that the 

signal energy is concentrated within small number of 

coefficients in the domain of sparsity [5],[6]. Many 

compression algorithms, such as MPEG and JPEG, exploit 

the fact that the signal is sparse in a certain domain, to 

remove redundancy and compress the signal [5]. Sparsity 

property is exploited recently to design a new signal 

strategy known as the Compressive Sensing (CS) [2]-[7]. 

CS strategy enables signal reconstruction from much 

smaller number of available signal samples (i.e. 

measurements), compared to the traditional sampling 

based on the sampling theorem. Recall that the traditional 

approach requires sampling with frequency at least two 

times higher than the maximal signal frequency. For 

signals in many real applications, sampling in such way 

results in a large number of samples. Furthermore, the 

optimization methods and algorithms for recovering 

missing information in sparse signals are constantly 
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developing.  

Signal can be sparse in time, frequency, time-frequency 

domain, space domain, etc. Sparse representation in certain 

domain can be achieved by choosing an appropriate 

transform basis, i.e. by decomposing the signal onto the set 

of suitable expansion functions. Depending on the signal 

nature, sparsifying basis can be wavelet transform basis, 

discrete Fourier transform (DFT), discrete cosine 

transform (DCT), Hermite transform (HT), time-frequency 

representation [1],[2],[5], etc.   

Our focus in this paper is on the frequency hopping 

spread spectrum (FHSS) signals and their optimal 

representation in the HT domain [8]-[18]. The reasons for 

choosing HT are as follows. The HT founds usage in 

various signal processing applications – biomedical signals 

analysis (EEG), ultra wideband (UWB) and 

communication signals analysis, in computer tomography, 

etc. It has many desirable properties such as good 

computational localization in both, signal and transform 

domains. Also, it is applicable in compression algorithms 

since many signals can be modeled by using smaller 

number of Hermite functions, compared to the signal 

length [12], [13]. It provides better compression for the 

certain class of signals, compared to the widely used 

orthogonal signal transforms, such as DFT, DCT and 

discrete wavelet transform (DWT), as it was proved in 

[13]. Here we have observed signals that appear in 

wireless communications and described the procedure for 

their sparsification in the HT domain. Finding suitable 

domain where signal is sparse is of particular importance 

for application of CS approach, in order to minimize the 

number of samples required for signal analysis.  

Particularly, in this paper the signals used in Bluetooth 

communications are considered and these are known as the 

FHSS modulated signals [8],[10],[11],[19]. Having in 

mind that the FHSS signals consist of short duration 

sinusoidal components, it is not an easy task to provide a 

domain with sparse representation. For instance, the 

commonly used DFT does not provide sparse 

representation of the FHSS signals. This is caused due to 

the spectrum leakage around the frequencies of the signal 

components. However, the Hermite expansion functions 

show similar shape as the FHSS signal components. 

Therefore, these functions are used to fit the signal 

components and to concentrate the representation in the 

HT domain. To enhance the signal sparsity, the 

optimization of the time-scaling factor and time-shift 

parameter of the Hermite basis functions is employed [12]. 
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The paper is organized as follows: Section II is the 

theoretical background on the HT. The procedure for the 

HT optimization is described in Section III, while the 

experimental results are given in the Section IV. 

Conclusion is given in the Section V.  

II. THEORETICAL BACKGROUND 

The Hermite functions are closely related with widely 

known Hermite polynomials: 
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  In terms of Hermite expansion, a continuous-time signal 

f(t) can be represented as [5], [13], [17]: 
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where ( )p tψ  denotes Hermite functions, while cp denotes 

Hermite expansion coefficients. If the signal f(t) as well as 

Hermite basis functions are sampled such that they have M 

discrete values available at the roots of the M-th order 

Hermite polynomial (1),  expansion (2) becomes finite, 

with upper bound equal to M – 1. If signal is sampled 

uniformly, values at the points of interest can be obtained 

incorporating interpolation techniques. Discrete Hermite 

function of order p is defined as [9], [13]-[18], [20]: 
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and also with following recursion [5]: 
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The scaling factor σ is used to match functions to the 

signal, by stretching or compressing them. Hermite 

coefficients are calculated using the Gauss-Hermite 

quadrature expansion [5], [12]: 
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To summarize, the discrete HT is defined as follows: 
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where c and f are Hermite coefficients and signal vectors, 

H is the transform matrix. The inverse transform reads: 
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with 1−H  being the inverse HT matrix. Note that the 

columns of this matrix are consisted of corresponding 

Hermite basis functions.  

III. HERMITE TRANSFORM IN FHSS SIGNAL ANALYSIS 

A. Spread Spectrum in wireless communications 

In this paper, we have observed one specific type of 

spread spectrum (SS) modulated signal. SS techniques are 

developed and used for securing the data transmission. It is 

used for effectively securing signals in wireless 

communications as well. The theory behind the SS has 

been known since the beginning of the 20th century. The 

SS technique found a practical application during the 

World War I, when it was used by the German military. It 

is robust to inter-symbol interference (ISI), jamming, noise 

and other environmental factors. There are two types of SS 

modulations [8],[10],[11],[19]: 

- direct sequence spread spectrum (DSSS), where fast 

pseudorandom sequence causes phase transitions in the 

carrier data. This modulation type is used in IEEE 

802.11b standard for wireless LAN; 

- frequency hopping spread spectrum (FHSS), where 

carrier is caused to shift the frequency in a 

pseudorandom way [19]. This modulation type is used in 

Bluetooth standard. 

Our focus in this paper is on the FHSS signals. FHSS 

modulation technique uses pseudorandom sequence to 

determine frequencies on which parts of the signal appear. 

Unless the pseudorandom sequence is known, it is hard to 

assume the frequency at which a carrier wave will appear 

next. Therefore, this technique is robust to different 

environmental factors such as noises, nearby RF signals, 

etc.  

Achieving the sparse or compact support of FHSS 

signals is the main motivation behind this work. Having in 

mind the shape of the considered signal components, the 

Hermite functions are chosen as a starting basis. Namely, 

the Hermite functions resemble the shape of FHSS 

components. However, in order to achieve better sparsity, 

it is necessary to adapt each basis function to the particular 

signal shape. Each component is firstly sampled at the 

points proportional to the roots of Hermite polynomial. 

Then, the procedure for fitting width of the Hermite 

functions to the width of the signal components, as well as 

their time shift is applied. By choosing the suitable fitting 

parameters, the HT can be optimally sparsified, even in the 

cases when the non-parameterized transform is not 

inherently sparse.  

 

B. Optimal signal representation in the HT domain 

The discrete signals of length M, being represented by 

the HT, should be sampled at non-uniform points being 

proportional to the roots of the M-th order Hermite 

polynomial. As the signals are usually sampled uniformly 

according to the sampling theorem, the following sinc 

interpolation formula [12] is used, for obtaining the values 

at the requested non-uniform points: 
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where m = 1,…, M, n = -K,…, K and t∆  is the sampling 

period. Instead of stretching and compressing the basis 

functions, alternatively, we can fix 1σ =  in (3) and 

introduce the signal time-axis scaling factor λ . As the aim 

is to find the value of the parameter producing the best 

possible concentration (i.e. sparsity), concentration 

measure, namely the l1-norm, is used as the optimization 

criterion: 
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where the operator { }HT ⋅  is used to denote the Hermite 

transform of the signal rescaled calculated according to (6) 

where 1σ =  is assumed in the definition of basis functions 

(3). Note also that 
1

cɶ  is used to denote the l1 –norm of 

the Hermite coefficients cɶ  of the rescaled signal, 

calculated as: 
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used as a measure of the HT sparsity. 

 The optimization problem (9) is a 1-D search over the 

possible values of the scaling factor λ. It was shown that 

the considered l1-norm exhibits convexity under conditions 

considered in detail in [12], where an adaptive iterative 

algorithm is also proposed to solve (9) without a direct 

search approach. 

 In similar way, after the extraction of FHSS localized 

components ( )
i

f n t∆ , instead of ( )
i

f n t∆  shifted signals 

(( ) )if n t± ∆ ∆  can be used in (8), with [ ]max max,∆∈ −∆ ∆  

being a small integer shift left or right. For every possible 

∆  optimization (9) is done, and a measure vector Μ  is 

formed. After that, the shift producing the minimal 

concentration measure is selected, according to: 

 arg min M
∆

∆ = .  (11) 

IV. EXPERIMENTAL RESULTS 

The model of the FHSS signal consisted of three 

components (hops) is observed. This synthetic model can 

be described by: 
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with K = 3, {1.4 / 4,0.91 / 4,1.25 / 4}
i

α π π π∈ , 10
i

β = , 

1
i

A =   and { /16, /15, /16}
i

M M Mτ ∈ − −  for i = 1, 2, 

3, respectively. 

The total signal length is M = 100 samples. The hops 

have the same duration, while differing in frequency. Also, 

components are shifted from the origin for 
i

τ . The time 

domain as well as the DFT and the HT of the signal are 

shown in Fig. 1. It can be seen that the HT better 

concentrates the signal than the DFT. However, in order to 

enhance the concentration in the HT domain and further 

reduce the number of Hermite coefficients by using (9) and 

(11), signal is firstly decomposed [10], and the separated 

components are further considered. The shape resemblance 

of the separated components with the Hermite basis 

functions is an indication of potential sparsity 

representation and possible application of the approach 

[12]. This is confirmed by the results shown in Figs 2 and 

3, illustrating the fact that the HT exhibits a better 

concentration when compared to DFT, and it is further 

improved by applying the parameters obtained by 

minimizations (9) and (11).  
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Fig. 1. The considered three-component FHSS signal: first row - time 

domain, second row – DFT, third row – HT domain  
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Fig. 2. The first component in the FHSS signal shown in Fig.1: 

original (1st row, full line) and optimally shifted component (1st row, 

dotted red line), DFT, HT and optimized HT (2nd – 4th rows), component 

reconstructed from the optimized HT domain (5th row) 
 

Optimization of the transform basis parameters 

improves the sparsity and produces negligible error 

between original and sparsified version of the signal 

component (Fig. 2, 5th row, and Fig. 3, 5th and 10th rows). 
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Fig. 3. The second and the third component of the FHSS signal 

defined in (12): original (1st and 6th rows, full line) and optimally shifted 

components (1st and 6th rows, dotted red line), DFT (2nd and 7th row), HT 

(3rd and 8th row) and optimized HT (4th and 9th row), component 

reconstructed from the optimized HT domain (5th and 10th  row) 

V. CONCLUSION 

Representation of FHSS communication signals in the 

HT domain is considered. This particular transform is 

studied as a potential domain of sparsity of FHSS signals. 

Separated components of the signal are observed. The 

procedure for sparsification of the component’s HT is 

proposed, and it is done by minimizing the l1 –norm based 

concentration measure. The results indicate further 

applicability in compressed sensing scenarios.  
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