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Abstract—Performing an accurate 3D surface scan of every-
day objects is sometimes difficult to achieve. Using the 3D scanner
as a main sensor in a fast-moving mobile robot emphasizes
this issue even further. When small robots with limited payload
are considered, professional Lidar systems are not likely to
be embeded due to their weight, dimensions and/or high cost.
Introduction of simple structured-light scanners made possible
fast scanning, effective robot detection and evasion of obstacles.
Nevertheless, some obstacles may still be difficult to detect and
recognize, primarily due to limitations of scanner’s performance
which results in low number of reconstructed surface points. In
this paper a compressed sensing technique, primarily used for
reconstruction of 2D images, is utilized to enhance quality of 3D
scan, by increasing number of reconstructed 3D points to the
scanners theoretical maximum. Obtained results demonstrated
feasibility of the approach in terms of mean square error.

I. INTRODUCTION

Basic requirement for any mobile robot is the accurate
knowledge of its surroundings, in order to localize itself
in space, avoid obstacles in its path, and demostrate smart
behaviour in general. This leads to introduction of robot
perception systems, whose main function is to detect sur-
rounding objects and avoid possible collisions. Detection
and recognition of potential obstacles, especially in dynamic
surroundings is a challenging task, and simple detection of
obstacles (without actual recognition) in robots vicinity is
sometimes insufficient. In a search for a solution, researchers
and engineers have introduced several sensor systems, which
are based on optoelectronics. They utilize simple geometry
principles [1], [2], with emphasis on multi-camera systems
and various 3D scanners. The basic principle is similar to the
function of human vision [1]. Downside of this approach is
introduction of complex calculations, which are often difficult
to execute in real-time with robot’s on-board computer.

In contrast to camera systems, laser scanners offer simpler
calculation of objects location in space, where laser point
(line) is moved by precise electromechanical system (rotating
mirror in most systems). Since the number of points returned is
relatively low, the detection based solely on laser data may be
unreliable [3]. Industry-grade laser scanners (SICK) [4] are in
some cases more expensive than the robot itself, or too bulky
to be efficiently utilized.

Structured light scanners were introduced as a low cost
alternative to Lidar scanners [5], [6], since they use simple
light pattern projector and off the shelf camera. Development
of Microsoft Kinect system, which is in fact more advanced
structured light sensor, inspired researchers to use it as a
robot navigation device. Correa et. al. [7] have successfully
implemented Microsoft Kinect as a sensor for navigation of
autonomous surveillance mobile robot indoors.

Both structured light scanner, and laser scanner are easier
to implement than multi-camera system, nevertheless they
inherit some of the common imperfection of optoelectronic
system. Challenging surface patterns like camouflaged objects,
dark object with low reflective ratio, part of objects in shade
and object lighted by other light source may be difficult to
recognize / reconstruct, due to low number of 3D points in
resulting point cloud. Each scan can retrieve fixed (maximum)
number of reconstructed points (one projection of light struc-
ture, or full LIDAR swipe). Techniques used in compressed
sensing, which are primarily used for reparations of damaged
/ undersampled 2D images, may be used for increasing quality
of a 3D scan, and supplement missing 3D points in point cloud.
Similar approach was already successfully used for refinement
of depth-maps obtained by Microsoft Kinect sensor [8].

Sparse signal processing and the compressed sensing (CS)
attracted a significant research interest during the last decade
[9]-[23]. CS deals with the reconstruction of randomly under-
sampled signals with the assumption that these are sparse in
a known transformation domain. The reduced set of measure-
ments often represents a consequence of a sampling strategy,
in order to reduce the data size requirements and the number
of acquisitions, preserving the same quality of the information
as if these values are available [14]-[19]. On the other hand,
known denoising techniques from the robust theory, such as
the L-statistics, are used to eliminate signal samples corrupted
by high noise [13], [20], [21]. Due to the random nature of
the noise, the corrupted values assume also random positions
and if the spasity condition is satisfied, CS reconstruction al-
gorithms can be applied in the reconstruction of the eliminated
values.

The theoretical foundation of CS lies in fact that the missing
samples can be reconstructed by solving an undetermined sys-



tem of linear equations with the additional sparsity constraint
[9]-[12], [14]-[19]. Hence, an adequate measure of sparsity
is exploited in the reconstruction procedures. A natural way
to measure the sparsity is the so-called `0-norm, that is, the
number of non-zero signal coefficients in the observed sparse
transform domain.

It is crucial to emphasize that direct variations of unavailable
samples values measuring `0-norm at the same time is an
NP (non-deterministic polynomial-time) hard problem. Linear
programming techniques and gradient-based algorithms are
applied in the reconstruction by relaxing the sparsity constraint
involving the `1-norm. Many studies [9]-[12] have confirmed
that in the domain of interest this relaxation procedure is
adequate in the CS context. Several reconstruction procedures
are based on this relaxation [14]-[19]: well-known convex
optimization algorithms such as primal-dual interior point
methods, gradient-based method (Orthogonal Matching Pur-
suit (OMP), Gradient Pursuit and CoSaMP).

In this paper, for the purpose of the observed 2D recon-
struction problem, the gradient-based reconstruction algorithm
presented in [13] is applied. The adaptations of the algorithm
for the case of 2D signals and transforms are presented in [22].

II. THEORETICAL BACKGROUND

A. 3D scanner system

Method introduced and evaluated in this paper is presented
as a possible improvement of in-house build structured light
scanner [5]. Scanner is used primarily for mobile robot nav-
igation, offering accuracy in 3rd dimension of 1.52 mm and
RMSE below 1 cm. It is built from off-the shelf components,
which includes DLP (Digital Light Processing) projector,
digital camera and a computer. Design is based on simple
stereovision system [6], where DLP projector acts as an
active component and camera is the passive one. Also, use
of DLP projector enables dynamic modifications of projected
patterns, which could be dynamically altered to cope with
current robot’s environment. Principle of operation is similar
to the laser scanner (and some structured light scanner),
where each projected point is analyzed, and scanned surface is
reconstructed point by point. If a single light ray is projected
from projector (noted as B on Fig.1) it passes through projector
frame (noted as point B’) and hits the target in point C. The
reflected light ray is captured by camera through its plane
(noted as point A’). The pixel on camera plane (A’) and the
pixel on projector plane (B’) correspond to an angle between
camera and object (α) and angle between projector and object
(β). If the exact position of camera and projector in the world
coordinate frame is known, the problem of reconstructing
exact position of point C is reduced to triangulation problem.

The position of point C in the reference coordinate frame
is derived using equations (1) and (2), where A’ and B’ are its
coordinates in the camera and projector planes, respectively;
while Pc and Pp are the camera and projector matrices; is a
triangulation function; and H is the linear transformation that
transforms A’= HB’ [1].

C = τ (A′, B′, Pc, Pp) (1)

τ = H−1
(
A′, B′, PcH

−1, PpH
−1) (2)

Figure 1. Triangulation of a surface point

If projector and camera are ideally positioned in horizontal
direction, projected points forming a horizontal line should
also form a horizontal line in camera image. In similar
situation, where vertical line is projected, and there is object
present in front of scanner system, line is curved on the camera
side (Fig.2). This basic principle is also used in proposed
scanner system.

In simulation, by placing a plane at infinity distance from
scanner, projected pattern (matrix containing 41 x 41 points)
captured by camera is a template image for objects at infinity.
By placing any object between plane at infinity and scanner
system, similar image of projected matrix is captured but
with projected points horizontally shifted towards the projector
side, where disparity (horizontal shift) is in direct function of
distance between scanner and object (Fig.2).

Horizontal displacement of each projected point with index
(i,j) is stored as a value of matrix on position (i,j). Complex 3D
reconstruction problem is in this part reduced to 2D problem,
which can be represented with the 2D image with rows/
columns that directly correspond to row / columns of the
projected matrix, and intensity that corresponds to intensity
at given 2D location. In real scenario obtained 2D matrix may
have some missing elements.

B. Scanner simulator

Simulator implemented in this paper is mimicking real-life
scanner [5]. Virtual scanner is used rather than real scanner as
it allows fully controllable scene, which is hard to achieve even
in the laboratory conditions. The simulated virtual scanner
is created in Blender environment, and consist of camera
and light ray projector. Objects of known characteristics and
dimensions are placed in front of scanner system in the
virtual scene. Result of Blender simulation is video stream
recorded from simulated scanner’s camera, which has similar



Figure 2. Disparity as seen from camera, as a result of an object placed in
front of the scanner system

characteristics as a real camera. Projected pattern consist of
41 x 41 points in matrix format, where each point is projected
at a single frame, thus eliminating possible error due to point
missclassification.

Simulated scanner is limited to 41 x 41 projected point, due
to fact that projected light ray object (cone) in Blender can
only accept rounded numbers as angle of cone tip. Smallest
possible angle of 1 degree was chosen, in order to achieve
maximum density of projected rays, without creating a new
non-standard Blender object. Higher density would be possible
in real-life projector, which is limited only by projector
resolution.

Algorithm that calculates 3D locations of projected points
is using previously obtained video stream, which is principally
the same algorithm utilized in real-life 3D scanner [5]. Whole
algorithm is fully implemented in Matlab environment, all data
analysis and results visualizations are also done using Matlab
tools.

III. THE COMPRESSED SENSING AND THE DISPARITY
MATRIX

A. Modelling the disparity matrix

Let us observe the disparity matrix f(n,m) of size M ×
M . The 2D DCT of the considered disparity matrix has the
following form (DCT II) :

C(k1, k2) =

M−1∑
n=0

M−1∑
m=0

ak1ak2f(n,m)bn,m(k1, k2). (3)

The corresponding inverse transform is defined by:

f(n,m) =

M−1∑
k1=0

M−1∑
k2=0

ak1
ak2

C(k1, k2)bm,n(k1, k2), (4)

with

bn,m(k1, k2) = cos

(
2π(2n+ 1)

2M
k1

)
cos

(
2π(2m+ 1)

2M
k2

)
,

(5)
representing 2D DCT basis functions, and ak1 = ak2 =√

1/M for k1 = 0 and k2 = 0 respectively and ak1 = ak2 =√
2/M for k1 6= 0, i.e. k2 6= 0 respectively.
Since it can be observed as a digital image, we assume

that the disparity matrix is a K-sparse signal in the 2D DCT
domain where K �M2, that is

f(n,m) =

K∑
i=1

Aibn,m(k1i, k2i), (6)

where Ai denotes the amplitude of the i-th signal compo-
nent. Disparity matrix has non-zero coefficients at positions
(k1i, k2i) i = 1, ...,K in the 2D DCT domain. This means
that only K 2D DCT coefficients of the disparity matrix have
significant non-zero values, while other values are equal to
zero or negligible.

We further assume that only MA elements of the disparity
matrix are available at positions (n,m) ∈MA (i.e. (M−MA)
values are missing at random positions). If the signal (i.e. the
disparity matrix) satisfies that K � M2, according to CS
theory, missing samples can be exactly reconstructed if certain
conditions are met [9].

B. 2D DCT gradient-based reconstruction algorithm

In the gradient reconstruction algorithm all values at missing
samples positions are set to zero. In further iterations these
values are considered as minimization variables, and they
are varied with a small, appropriately chosen step ±∆. For
every observed missing value position concentrations of the
both 2D DCTs are evaluated, in order to determine the
gradient direction, which is defined as the difference of the
concentration measures. The missing disparity matrix values
are then updated simultaneously in a steepest descent manner.
A good starting value of the step can be obtained as:

∆ = max |f(n,m)| , (n,m) ∈MA. (7)

Before the algorithm starts, the signal consisted of available
signal samples and with zeros at missing samples positions is
formed, according to :

y(m,n) =

{
0, for (n,m) ∈ M\MA

f(n,m), for (n,m) ∈MA,

where M denotes the full set of signal positions.
For each iteration k, until the desired precision is obtained,

the following steps are repeated:
Step 1: For each missing value at the position (n,m) ∈

M\MA, form two auxiliary matrices according to:

y
(k)
1 (n,m) =

{
y
(k)
1 (n,m) + ∆, for (n,m) ∈M\MA

y
(k)
1 (n,m), for (n,m) ∈ MA

,



y
(k)
2 (n,m) =

{
y
(k)
2 (n,m)−∆, for (n,m) ∈M\MA

y
(k)
2 (n,m), for (n,m) ∈ MA

,

Step 2: Calculate the finite differences of the signal trans-
form concentration measures [24]

g(n,m) =
1

2∆

[
M+ −M−

]
(8)

where

M+ =
1

M2

∑
k1

∑
k2

∣∣C+(k1, k2)
∣∣

M− =
1

M2

∑
k2

∑
k2

∣∣C−(k1, k2)
∣∣

represent concentration measures. Note that C+(k1, k2) and
C−(k1, k2) denote calculated 2D DCTs of two previously
defined signals y(k)1 (n,m) and y(k)2 (n,m) respectively.

Step 3: Form the gradient matrix G(k) of the same size as
the disparity matrix f(n,m) with elements defined as follows:

G(k)(n,m) =

{
g(n,m), for (n,m) ∈ N\MA

0, for (n,m) ∈ MA

with g(n,m) calculated in the Step 2.
Step 4: Correct the values of y(n,m) using the gradient

matrix G(k) with the steepest descent approach:

y(k+1)(n,m) = y(k)(n,m)− 2∆G(k)(n,m).

We multiply the gradient matrix with the factor 2∆ to elimi-
nate the dependence on ∆ that appears in (8). By decreasing
∆ when the algorithm convergence slows down a high level
of precision can be achieved. The proper decrease of the step
can be achieved when the oscillatory nature of the adjustments
is detected [13].

IV. SIMULATION RESULTS AND DISCUSSION

In order to illustrate the presented theoretical concepts,
several disparity matrices are observed.

Example 1: We consider the compressed Sensing scenario,
where M −MA = 400 randomly positioned disparity matrix
values are missing. Moreover, it is important to emphasize that
certain disparity matrix elements have infinite values, in corre-
sponding to the background at infinity, and thus we considered
them also as unavailable, besides the observed 400 unavailable
samples. The number of these elements is 253, 225, 421, 204,
148, 232 respectively, These values represent an additional
challenge for the reconstruction algorithm, especially since
they are grouped. The corresponding disparity matrices with
missing elements are shown in Fig.3, where missing values are
denoted with dark blue color. Light blue denotes infinity while
yellow to red shades denote from furthers to closest object
or its parts. We apply the gradient reconstruction algorithm
and the obtained results are shown in Fig. 4 (a)-(f). Please
note that scanned artificial objects were: a) Blender monkey
standard object, b) sphere, c) multiple objects (spheres and
cubes), d) small sphere with a background, e) single human,
and f) humans.
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Figure 3. Disparity matrices with M−MA = 400 missing values at random
positions
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Figure 4. Reconstructed disparity matrices

Example 2: In order to additionally validate the results, we
calculate MSE between the original and undersampled dispar-
ity matrices, as well as the MSE between the original and
reconstructed disparity matrices. We consider scenarios from
10% to 80% of missing disparity matrix values, with the step
of 10%. MSEs are obtained based on averaging the squared
reconstruction errors calculated for 100 independent random
realizations of missing values positions in disparity matrices,
for each considered percent of missing values. Results are



shown in Fig.5 proving the significant MSE improvement after
the reconstruction is done.

With 80% of disparity missing, sphere object has the MSE
of 39.9 dB, while humans object has MSE of 44.9 dB. CS al-
gorithm demonstrated significant improvement, lowering MSE
for both object to 15.7 dB and 15.8 dB respectively, which is
significantly better than undersampling of original matrices
by 10%. From Fig.5 it can be seen that difference between
undersampled and reconstructed MSE value approximately
is the same across whole missing values range. Also, as
expected MSE value increases as the number of missing values
increases.

Figure 5. MSE analysis

V. CONCLUSION

The objective of the paper was to improve quality of a 3D
scanner data, by introducing the compressed sensing based
signal reconstruction. this in turn enables more reliable behav-
ior of different smart systems, which can potentially use 3D
scanners output. In real-life scenarios, projected pattern are not
completely detected by camera, and thus maximum number of
surface points cannot be achieved. In order to provide better
reconstruction of scanned surface, complex 3D reconstruction
problem is partly reduced to 2D problem (disparity matrix),
and with the use of compressed sensing algorithms, missing
data are filled. Hence, almost maximum theoretical number of
points can be obtained. In simulated environment, proposed
method performs very well. Presented results show that even
when 80% percent of disparity matrix is lost, compressed
sensing reconstruction algorithm provided high quality of
reconstructed surface and successfully filled missing parts of
scanned objects. Despite time-consuming and complexity of
CS algorithm, small resolution of disparity matrix allow future
implementation of the algorithm in mobile robots scanner
system. In future research, presented CS algorithms would
be included in more complex structured-light scanners with
dynamically adaptable density of projected points, as well
as implemented in parallel processing fashion for increased
computational efficiency.
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