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Modifed Wigner Bispectrum and its
Generalizations

Srdjan Stanković, LJubiša Stanković, Zdravko Uskoković

Abstract– Wigner bispectrum of multicom-
ponent signals is studied. Its modified and re-
duced forms are introduced. A generalization
of the presented forms to the Wigner higher or-
der spectra (WHOS), in the case of multicom-
ponent signals, is provided. From our previous
work it is known that the cross terms removal
(reduction) is possible for an odd-order spectra
with equal number of conjugated and noncon-
jugated terms. Here, we extended the analysis
to an even-order spectra, as well. The theory
is illustrated by examples.

I. INTRODUCTION

Higher order spectra have been intensively
studied lately. We refer the reader to the re-
view papers [1], [2]. Using the concept of
higher order spectra, the definitions of time-
varying higher order spectra for the case of
nonstationary signals, with special attention
devoted to the Wigner higher order spectra
(WHOS), are introduced, [3], [4]. The analy-
sis of the WHOS of multicomponent signals
is performed in [5], where it is shown that the
separation of auto terms and cross terms may
be easily done in the case of an odd-order
spectra. That analysis led to the definition
of the L-Wigner distribution, as a special and
reduced form of the Wigner higher order spec-
tra, [6], [7].

In this paper we show that, by an appro-
priate transformation of the signal before the
application of the WHOS, the separation of
the auto terms and cross terms is possible for
an arbitrary order of the WHOS. In the first
part of the paper, the Wigner bispectrum, as
the lowest one that preserves the phase infor-
mation, is studied in details. Its analysis and
modifications provided a basis for the general-
izations in the second part of the paper.
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II. BISPECTRUM AND WIGNER

BISPECTRUM

Second-order cumulant of a random zero-
mean signal x(t) is identical to its autocor-
relation function (the second order moment),
and it is defined by

cx2(τ) = mx
2(τ) = E {x∗(t)x(t+ τ)} (1)

The Fourier transform of the autocorrelation
function is the power spectrum:

S2(ω) = F {cx2(τ)} =

∫

τ

cx2(τ)e
−jωτdτ (2)

The previous relations may be extended to the
higher order statistics [1], [2]. The third order
moment mx

3(τ1, τ2) is given by:

mx
3(τ1, τ2) = E {x∗(t)x(t+ τ1)x(t+ τ2)}

while the third order cumulant is defined in
terms of the first, second and third order mo-
ment as:

cx3(τ1, τ2) = mx
3(τ1, τ2)−

mx
1 [m

x
2(τ1) +mx

2(τ2) +mx
2(τ1 − τ2)]+2(m

x
1)
3

(3)
where mx

1 represents the mean value of the
signal. Without loss of generality, we have
assumed that mx

1 = 0, when cx3(τ1, τ2) =
mx
3(τ1, τ2).
The Fourier transform of cx3(τ1, τ2) is called

bispectrum:

B(ω1, ω2) =

∫

τ1

∫

τ2

cx3(τ1, τ2)

× e−j(ω1τ1+ω2τ2)dτ1dτ2 (4)

where
cx3(τ1, τ2) =

E {x∗(t+ α)x(t+ τ1 + α)x(t+ τ2 + α)}
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and α is an arbitrary constant.
For deterministic nonstationary signals, re-

placingE {x∗(t+ α)x(t+ τ1 + α)x(t+ τ2 + α)}
by x∗(t+α)x(t+τ1+α)x(t+τ2+α) we arrive
at the Wigner bispectrum (WB):

WB(t, ω1, ω2) =

∫

τ1

∫

τ2

x∗(t+α)x(t+ τ1+α)

×x(t+ τ2 + α)e−j(ω1τ1+ω2τ2)dτ1dτ2 (5)

where the value of α = −τ1
3 −

τ2
3 is chosen such

that the mean value of the signal’s arguments
in the above integral is equal to t, [3], [4].

III. WIGNER BISPECTRUM OF THE

MULTICOMPONENT SIGNALS

The WB of a signal x(t) is introduced by
Gerr, [3]. Fonolosa and Nikias, [4], have ex-
tended this idea to the higher order time-
varying spectra, and provided the detailed
study of the WB itself. Its definition (5), with
α = − τ1

3 −
τ2
3 , is:

WB(t, ω1, ω2) =
∫

τ1

∫

τ2

x∗(t−
τ1
3
−
τ2
3
)x(t+

2τ1
3
−
τ2
3
)

×x(t−
τ1
3
+
2τ2
3
)e−jω1τ1−jω2τ2dτ1dτ2 (6)

Using the Fourier transform X(ω) of a signal
x(t), the previous expression may be written
as:

WB(t, ω1, ω2) =
1

2π

∫

θ

X∗(ω1 + ω2 +
θ

3
)

×X(ω1 −
θ

3
)X(ω2 −

θ

3
)e−jθtdθ (7)

The above definitions exhibit apparent non-
linearity of the WB. Among other effects,
this WB’s nonlinearity manifests itself through
cross-terms, when it is used for time-frequency
analysis of multicomponent signals. As an
illustration, let us consider an M-component
signal

x(t) =
M∑

i=1

xi(t). (8)

Its WB has the form:

WB(t, ω1, ω2) =

M∑

i1=1

M∑

i2=1

M∑

i3=1

∫

τ1

∫

τ2

x∗i1(t−
τ1
3
−
τ2
3
)

×xi2(t+
2τ1
3
−
τ2
3
)xi3(t−

τ1
3
+
2τ2
3
)

× e−jω1τ1−jω2τ2dτ1dτ2. (9)

It is obvious that the WB hasM3 terms, where
only M of them (i1 = i2 = i3) are auto terms,
while the remaining M3 − M are the cross
terms. This clearly indicates the difficulties
arising in time-frequency analysis of multicom-
ponent signals when using the WB by defini-
tion (6).

Our aim is to provide a modified WB which
will, under certain conditions, produce cross-
terms free time-frequency representation of a
multicomponent signal.

In order to provide an initial insight into the
problem, consider a very simple example of a
sum of two complex exponential signals:

x(t) = ej(tω01+ϕ1) + ej(tω02+ϕ2) (10)

whose Fourier transform is:

X(ω) = 2πejϕ1δ(ω − ω01) + 2πe
jϕ2δ(ω − ω02)

(11)
The illustration of integrand in the WB, eq.
(7), for θ = 0, is presented in Fig. 1. The WB
is different from zero for:

ω1 + ω2 +
θ

3
− ω0i = 0

ω1 −
θ

3
− ω0j = 0

ω2 −
θ

3
− ω0k = 0 (12)

where i, j, k may assume values of 1 or 2.
For i = j = k the auto terms are obtained,

and their locations are defined by θ = −ω0i,
(ω1, ω2) =

2
3(ω0i, ω0i). All the remaining solu-

tions of the above system are associated with
the cross terms.

Note that auto terms are distributed along
the symetral s : ω1 = ω2 in the (ω1, ω2) space.
This is an important conclusion which enables
one to eliminate all the terms that do not lie
on this line. But, besides auto terms, this line
contains some cross terms, as well. The cross
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Fig. 1. Illustration of the integrand in Wigner bispectrum for θ = 0.

terms lying on line s are obtained from system
(12 ) with j = k �= i. The cross terms’ lo-
cations are at θ = ω0i − 2ωoj . It is evident
that, for an arbitrary two-component (mul-
ticomponent) signal, we may not distinguish
auto and cross terms lying on the line s. If we,
however, suppose that we somehow manage to
have ω02 = 2ω01, then the cross term will be,
for any ω01, positioned at θ = 0, and will lie
at (ω1, ω2) = (ω01, ω01), what is the natural
auto term position of the first component. All
the other components will be dislocated from
θ = 0 and may be easily eliminated using a
window in θ−domain. This is the basic idea
which will be used in the definition of the mod-
ified WB.

IV. REDUCED AND MODIFIED

WIGNER BISPECTRUM

From the previous analysis we have con-
cluded that all the auto terms, as well as
some cross terms, are positioned on the line
s : ω1 = ω2 = ω. The WB on this line is
defined by:

RWB(t, ω, ω) =

1

2π

∫

θ

X∗(2ω +
θ

3
)X2(ω −

θ

3
)e−jθtdθ (13)

and will be referred to as the reduced Wigner
bispectrum (RWB).

Following the idea presented at the end of
Section 3, if one associates to each signal com-
ponent another component having its doubled

frequency, then the desired terms will lie at the
θ origin. Its position along ω axis will be at
the positions equal to the signal components’
frequencies, Fig.2. These will be exactly the
terms we look for. Note that we have used the
notion of desired and not the auto term, since
these are not the auto terms in the conven-
tional sense. All the other terms may be re-
moved using a frequency domain window P (θ)
which will be of a low pass type. Including the
window P (θ) in the expression for the reduced
WB, we obtain the modified Wigner bispec-
tum (MWB):

MWB(t, ω, ω) =

1

2π

∫

θ

P (θ)X∗

e (2ω+
θ

3
)X2

e (ω−
θ

3
)e−jθtdθ (14)

As it has been mentioned, for the MWB one
needs to modify the input signal. The modifi-
cation is performed in order to associate each
signal’s component with the corresponding one
having doubled original component frequency.
The simplest way to achieve this is to form a
signal [8], [9]:

Xe(ω) = X(ω) +X(
ω

2
)

or

xe(t) = x(t) + 2x(2t) (15)

Note that a similar effect may be achieved for
asymptotic signals [10] by using the transfor-
mation xe(t) = x(t) + x2(t).
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Fig. 2. Coupling of signal components

For the considered two-component signal
(10), the MWB of a signal modified by (15),
has the form

MWB(t, ω) =

k1δ
2(ω − ω01)e

jϕ1 + k2δ
2(ω − ω02)e

jϕ2 (16)

Observe that MWB(t, ω) has only the terms
at the signal components instantaneous fre-
quencies, as well as that the phase infor-
mation is preserved in the MWB, which
is not the case in the widely used quadratic
time-frequency distributions.

A time domain definition of the MWB is:

MWB(t, ω) =

p(t) ∗t

∫

τ1

∫

τ2

x∗(t−
τ1
3
−
τ2
3
)x(t+

2τ1
3
−
τ2
3
)

×x(t−
τ1
3
+
2τ2
3
)e−jω(τ1+τ2)dτ1dτ2 (17)

where ∗t denotes a convolution in time, while
p(t) is the inverse Fourier transform of P (θ).
From expression (17) one may conclude that
for the noisy signals the MWB is unbiased,
what is a significant difference when compared
to the quadratic distributions, [15], [16].

Observe that the previous development was
done for signals with constant frequency in
a considered time interval. Generalization to
the more complex signal forms, and for an ar-
bitrary order of time-varying spectra, will be
presented in Section 6. A numerical example
with nonstationary signal is presented in the
next Section.

V. NUMERICAL EXAMPLE

Let us consider a multicomponent nonsta-
tionary signal defined as:

x(t) = ej10πtΠ

(
t+ 0.125

0.25

)
+

+e−j8πtΠ

(
t− 0.125

0.25

)
,

where

Π(t) =

{
1 |t| < 1
0 elsewhere

whose real and imaginary parts are shown in
Fig.3a. The motivation for this particular form
of signal was found in the electromagnetic dif-
fraction theory where the electrical field, scat-
tered from the truncated arrays, corresponds
to the above signal form, [12], [13], [14].

Applying the modified signal:

xe(t) = x(t) + x2(t)

to the MWB (14) with a rectangular window
P (θ) having the unity value for |θ/3| ≤ 2π, we
got the distribution shown in Fig.3d. The full
(three-dimensional) Wigner bispectrum (with-
out P (θ) window) is shown in Fig.3b). The
case with a rectangular window P (θ) in (7)
(having the unity value for |θ/3| ≤ 4π) is pre-
sented in Fig.3c). The advantages of the MWB
(over the Wigner distribution calculated by
definition (7)), as a tool for time-frequency
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Fig. 3. a) Multicomponent nonstationary signal (its real and imaginary parts), b) Wigner bispectrum, c) Wigner
bispectrum with the window P (θ) of the width Wp = 4π, d) Modified Wigner bispectrum with the window
P (θ) of the width Wp = 2π.
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analysis, are evident from Fig.3. Similar
forms, with the preservation of phase informa-
tion, may be obtained using signal transforma-
tions defined by (15).

VI. GENERALIZATIONS

The Wigner higher order spectra of a deter-
ministic signal x(t) are defined by [4]:

Wk(t, ω1, ω2, ..., ωk) =

∫

τ1

∫

τ2

...

∫

τk

x∗(t− α)
L−1∏

i=1

x∗(t− α+ τ i)

×
k∏

i=L

x(t− α+ τ i)
k∏

i=1

e−jωiτidτ i (18)

where:

α =
1

k + 1

k∑

i=1

τ i

In terms of the Fourier transform X(ω), the
above equation becomes:

Wk(t, ω1, ω2, ..., ωk) =

1

2π

∫

θ

X∗(
k∑

i=1

ωi +
θ

k + 1
)

×
L−1∏

i=1

X∗(−ωi +
θ

k + 1
)

×
k∏

i=L

X(ωi −
θ

k + 1
)e−jθtdθ (19)

In order to analyze properties and locations
of the auto-terms and cross-terms, let us con-
sider the multicomponent signal whose Fourier
transform may be expressed as:

X(ω) =
M∑

m=1

Xm(ω − am) (20)

where Xm(ω) = 0, for |ω| ≥ W , and am =
constant1 .

1Note that the signal

x(t) =
M∑

m=1

rm(t)e
jφm(t)

For signal (20), the WHOS becomes:

Wk(t, ω1, ω2, ..., ωk) =
M∑

m1=1

M∑

m2=1

...
M∑

mk+1=1

∫

θ

X∗

m1
(
k∑

i=1

ωi +
θ

k + 1
− am1

)×

×
L−1∏

i=1

X∗

mi+1
(−ωi +

θ

k + 1
− ami+1

)

×
k∏

i=L

Xmi+1
(ωi−

θ

k + 1
−ami+1

)e−jθtdθ (21)

For multicomponent signals the definition of
WHOS implies that the effects of nonlinearity
give rise to the heavy presence of the cross-
terms. Note, for example, that the Wigner k-
spectrum of an M-component signal contains
Mk+1 terms, onlyM of them being auto-terms
(for example, in the Wigner trispectrum of
a four-component signal there are 256 terms,
with 252 cross terms). This effectively illus-
trates the problem of emphatic cross-terms in
the WHOS.

A. Positions of Terms in the ω Space

The integrand in (21) is different from zero
if the following inequalities hold:

∣∣∣∣∣

k∑

i=1

ωi +
θ

k + 1
− am1

∣∣∣∣∣
< W ;

∣∣∣∣−ωj +
θ

k + 1
− amj+1

∣∣∣∣ < W ;

∣∣∣∣ωl −
θ

k + 1
− aml+1

∣∣∣∣ < W

j = 1, ..., L− 1, l = L, ..., k. (22)

may be written in the previous form if all its compo-
nents belong to the class of asymptotic signals, i.e. the
amplitude variations are much slower than the phase
variations, [10,17]. In addition, we will assume that
the instantaneous frequencies φ′m(t) may be treated as
constants am, within the considered time interval and
Xm(ω) = FT{rm(t)}.
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Eliminating θ from (22), the terms’ positions
along ω1 , ω2, ..., ωk follow:

∣∣∣∣∣∣∣∣∣

−ωj +

L∑

i=1
ami

−
k+1∑

i=L+1

ami
− (k + 1)amj+1

k + 1

∣∣∣∣∣∣∣∣∣

<
2k

k + 1
W , j = 1, 2, ..., L− 1

∣∣∣∣∣∣∣∣∣

ωl −

L∑

i=1
ami

−
k+1∑

i=L+1

ami
+ (k + 1)amj+1

k + 1

∣∣∣∣∣∣∣∣∣

<
2k

k + 1
W, l = L,L+ 1, ..., k (23)

Bearing in mind that an auto term is obtained
for m1 = m2 = ... = mk+1 ≡ m, we get the
auto terms’ positions as:

∣∣∣∣−ωj +
(2L− k − 1)am

k + 1
− am

∣∣∣∣ <
2k

k + 1
W ,

∣∣∣∣ωl −
(2L− k − 1)am

k + 1
− am

∣∣∣∣ <
2k

k + 1
W

where j = 1, 2, .., L − 1 and l = L, ..., k. Ob-
serve that the auto terms’ centers are located
along the line:

s : Qω1 = Qω2 = ... = QωL−1 =

= qωL = ... = qωk = ω (24)

where Q= (k+1)/(2L− 2k− 2) and q = (k+
1)/2L. The auto terms lie at the point ω = am.

Generally, the auto terms’ positions are dif-
ferent along different axis and they are biased
with respect to the am (the natural auto term
position). Two especially interesting cases are:
1) For L = 1, the positions are axis inde-
pendent, [4]. They are determined by ωi =
2
k+1am, i = 1, 2, ..., k. In this case, line s is the
symmetral of the first quadrant in ω space:

s : ω1 = ω2 = ... = ωk = ω (25)

2) Another interesting case is L = (k + 1)/2
when the auto terms’ positions are at +am or

−am. In this case Q = −1, q = 1 so the auto
terms lie along the line:

s : −ω1 = −ω2 = ... = −ωL−1=

= ωL = ... = ωk = ω (26)

at their natural positions ω = am, [5], [6].
All the terms whose centers lie outside line s,

defined by (24), are the cross-terms. This is an
important result, since the significant number
of cross terms may be eliminated from further
consideration. But, besides the auto-terms,
line s contains certain number of cross-terms.
The elimination of the remaining cross terms
may be only based on their locations along θ
axis in (21).

B. Positions of Terms Along θ Direction

For the multicomponent signals it is of great
importance to investigate the terms’ (auto
terms and cross terms) locations along θ axis in
(21). Namely, in the ordinary Wigner analysis
it is shown that this θ−dimension may provide
an efficient basis for the auto terms and cross
terms separation [6], [11], [17]. In Section 4, it
is extended to the WB. The same idea will lead
to the method for the cross terms suppression
in the Wigner higher order spectra.

The terms’ positions along θ axis may be
obtained from (22) as:

∣∣∣∣∣
θ −

L∑

i=1

ami
+

k+1∑

i=L+1

ami

∣∣∣∣∣
< (k + 1)W (27)

Especially interesting are the cases when the
auto terms’ positions along θ are signal inde-
pendent.
Theorem 1. The auto term position

along θ axis is signal independent only
if L = (k + 1)/2.
Proof. For an auto term ami

≡ a holds, so
the relation (27) becomes:

|θ − (k − 2L+ 1)a| < (k + 1)W

and the proof immediately follows. QED
In this case the auto terms’ positions are sig-

nal independent and they are located at (and
around) θ axis origin, while the cross terms are
dislocated from the θ origin. This fact may be
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used for the auto terms and cross terms sepa-
ration. It is studied in details in [5], [6]. This
case may be considered as a generalized en-
ergy distribution. Note that, in this case, the
information about the phase is lost.

If one wants to preserve the information
about the phase, then the value L = (k+1)/2
must not be used. But, if L �= (k + 1)/2 then
the auto terms’ positions are signal dependent,
which prevents their separation from the cross
terms.

However, an interesting trick may be used
in order to extract the information about the
auto terms. It will be shown that it is possible
to modify the signal so that the cross terms
appear at the ”natural” auto terms positions
ωi = ami

, i = 1, 2, ..., k. Further analysis will
be based on the theorems that follow.
Theorem 2. The Wigner k-spectrum of a

two-component signal will have terms centered
at the θ origin, if their frequencies satisfy:

a1 =

(
1 +

k − 2L+ 1

m− n

)
a2 (28)

wherem and n are arbitrary integers such that
0 ≤ m ≤ L and 0≤ n ≤ k − L+ 1, (m �= n).
Proof: Note that in the case of two-

component signals the instantaneous frequen-
cies ami

in the general relation (27) may as-
sume values a1 or a2. Let the number of ap-
pearances of a1 in the first sum in (27) is m
(0 ≤ m ≤ L), while in the second sum it ap-
pears n times (0 ≤ n ≤ k − L + 1). Under
these general assumptions, relation (27) takes
the following form:

|θ − (m− n)a1 + (m− n+ k − 2L+ 1)a2| <

< (k + 1)W

thus, for θ = 0, directly producing the proof
of the theorem. QED
Theorem 3. If, in the Wigner k-spectrum

of a multicomponent signal (20), each signal
component having the frequency am, is accom-
panied with the corresponding one having the
frequency (k−2L+2)am, then there will exist
terms centered at the θ origin, with positions
along the line:

s : ω1 = ω2 = .. = ωL−1 =

= −ωL = .. = −ωk = −ω = −am (29)

at the points ω = am.
Proof: From (22) follows that the terms are

on line s for θ = 0 iff m2 = m3 = ... = mk+1.
In the sense of Theorem 2, that means m = 1,
n = 0, and the proof directly follows. Q.E.D.

Note that terms lying at the positions de-
fined by Theorem 3 (natural auto terms’ po-
sitions) are actually the cross terms. In this
way, the Wigner k-spectrum has the terms at
the positions ω =am (m = 1, 2, ...,M). At the
same time, these terms are obtained by the
integration around θ axis origin, i.e. their po-
sitions along θ are not signal dependent.

C. Modifications in the Wigner k-Spectrum

Now, we have to provide a way to gener-
ate a signal whose each component will have
the associated component, with frequency p =
(k−2L+2) times greater than the original one
(according to Theorem 3). One way to achieve
this is by creating a signal of the form:

xe(t) = x(t) + xp(t) (30)

The case of k = 2, was treated in Section 2.
This approach works out well for monocompo-
nent signals. But, since the primary goal of
this paper is the analysis of multicomponent
signals, then one should note the shortcoming
stemming from the appearance of additional
undesirable terms that may result from the
p−th power of a multicomponent signal2 .

The above shortcoming may be avoided for
the signals defined in footnote 1, at the same
time satisfying the conditions of Theorem 3, if
one resorts to the frequency domain, by defin-
ing the signal in the form [8], [9]:

Xe(ω) = X(ω) +X(ω/p) (31)

Its time domain equivalent is:

xe(t) = x(t) + px(pt) (32)

Raising the signal (in (30)) to the p-th
power may introduce additional terms, while

2In the case p = 2, additional terms in the modified
Wigner higher order spectra may appear if there exist
such components that am + an = 2(al + ak) for any
m,n, k, l = 1, 2, ...,M . These terms will be located
along ω at ω = am + an.
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the presence of p in (31) increases the com-
plexity of numerical realization. So, regardless
of the accepted signal modification, it is of ut-
most importance to keep p as low as possible.
Generally, one may distinguish two cases:

-If k is an odd integer (Wigner distribution,
k = 1, and Wigner trispectrum, k = 3, are the
lowest ones in this group), then the minimal
value p = 0 is obtained with L = (k+1)/2. In
this case no signal modification is needed.

-If k is an even integer (Wigner bispectrum,
k = 2, is the lowest one in this group), the
minimal value of p satisfying the previ-
ous condition is p = 2, for any order of k,
with L = k/2. Thus, the modification for
any even order spectra reduces to the
modification needed in the WB, eq.(15).

D. Modified Versions of the Wigner k-

Spectrum

From the previous analysis the modified ver-
sion of the Wigner k-spectrum may be defined,
considering only line s. The window P (θ) is
used to control the cross-terms’ presence along
s. The modified Wigner k-spectrum is defined
by:

MWk(t, ω) =
∫

θ

P (θ)X∗((k − 2L+ 2)ω +
θ

k + 1
)

×X∗(L−1)(ω +
θ

k + 1
)

×Xk−L+1(ω −
θ

k + 1
)e−jθtdθ (33)

The integration over ”auto terms” (in the
sense of Theorem 3) is completely performed,
while the other terms are eliminated, if the
window P (θ) width Wp (P (θ) = 0 for θ >Wp)
satisfies:

(k + 1)W <WP <

< min
m,n

{|am − (k − 2L+ 2)an|} − (k + 1)W

(34)
This relation follows from (27) considering
only line (29), (m = m1, n = m2 = m3 =
... =mk+1).

The special cases are:
1o Modified Wigner bispectrum with L =

k/2 = 1:
MW2(t, ω) =

∫

θ

P (θ)X∗(2ω +
θ

3
)X2(ω −

θ

3
)e−jθtdθ (35)

2o ModifiedWigner trispectrum with L = (k−
1)/2 = 1:

MW3(t, ω) =
∫

θ

P (θ)X∗(3ω +
θ

4
)X3(ω −

θ

4
)e−jθtdθ (36)

3o For k an odd integer and L = (k+1)/2, the
frequency domain definition of the L-Wigner
distribution is obtained:

MWk(t, ω) =

∫

θ

P (θ)XL(ω+
θ

2L
)X∗L(ω−

θ

2L
)e−jθtdθ (37)

The last form is described in details in [5], [6],
[17].

VII. CONCLUSION

Wigner higher order spectra (with a special
attention to the Wigner bispectrum) are ana-
lyzed in the case of multicomponent signals. It
is shown that the original definitions are use-
less in their basic forms. The modifications of
spectra are proposed in order to treat this kind
of signals. If the order of Wigner higher or-
der spectra is an even one, then the additional
signal transformation is needed. The theory is
illustrated with a nonstationary multicompo-
nent signal.

R���������

[1] C. L. Nikias and J. M. Mendel, ”Signal processing
with higher order spectra”, IEEE Signal Process-
ing Magazine, July 1993, pp.10-37

[2] J. M. Mendel, ”Tutorial on higher order statistics
(spectra) in signal processing and system theory:
Theoretical results and some applications”, IEEE
Proceedings, 79, pp.278-305, March 1991

[3] N.L. Gerr, ”Introducing a third order Wigner dis-
tribution”, Proc. IEEE, vol. 76, no. 3, pp.290-292,
March 1988.

[4] J.R. Fonollosa, C.L. Nikias, ”Wigner higher order
moment spectra:Definition, properties, computa-
tion and application to transient signal analysis”,
IEEE Trans. on Signal Processing, vol. 41, no.1,
pp.245-266, January 1993

[5] LJ. Stankovíc, ”An analysis of the Wigner
higher order spectra of multicomponent sig-
nals”, Annales des telecommunications, no.3/4,
March/April 1994 pp. 132-136.

[6] LJ. Stankovíc, ”A multi time definition of the
Wigner higher order distribution; L-Wigner dis-
tribution” IEEE Signal Processing Letters, vol.1,
no.8, July 1994 pp. 106-109.



460 TIME-FREQUENCY SIGNAL ANALYSIS

[7] LJ. Stankovíc, S. Stankovíc, ”An analysis of in-
stantaneous frequency presentation using time-
frequency distributions-Generalized Wigner dis-
tribution”, IEEE Trans. on Signal Processing,
vol.43, no.2, Feb. 1995, pp. 549-552.

[8] N. Marinovíc, L. Cohen, S. Umesh: ”Joint repre-
sentation in time and frequency scale for harmonic
type signals”, in Proc. of IEEE-SP Int. Symp. on
TF/TSA, Philadelphia, PA, Oct. 1994, pp.84-87.

[9] N. Marinovíc, L. Cohen, S. Umesh: ”Scale and
harmonic type signals” in Proc. Int. Soc. Opt.
Eng., vol-2303, 1994.

[10] B. Boashash, ”Estimating and interpreting the
instantaneous frequency of a signal: Part I-
Fundamentals”, IEEE Proceedings, vol.80, no.4,
April 1992, pp.519-538.

[11] LJ. Stankovíc, ”A method for time-frequency
analysis”, IEEE Transactions on Signal Process-
ing, no.1, vol.42, January 1994, pp.225-229.

[12] L. Carin, L.B. Felsen, ”Wave-oriented data
processing for frequency-and time- domain scat-
tering by nonuniform truncated arrays”, IEEE
Ant. and Propagation Mag., vol.36, no.3, June
1994, pp.29-43.

[13] LJ. Stankovíc, S. Jovícevíc, ”Boundary condi-
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